#) JOLICH

FORSCHUNGSZENTRUM

OpenACC Performance
Optimization

04.10.2017| J. Kraus (NVIDIA)

#) JULICH

FORSCHUNGSZENTRUM

Outline

 Memory coalescing
* Loop optimizations

haft

Mitglied der Helmholtz-Gemeinsc

04.10.2017 OpenACC Performance Optimization 2

haft

Mitglied der Helmholtz-Gemeinscl|

CSR sparse matrix storage

#) JULICH

FORSCHUNGSZENTRUM

0 2 3 4 0 2 3 4
0 |-2 O |0 0-2]|1
111 (2|1 (0 (O 1 1 (-2 |1
210 (1 (-2(1 |0 2 1 |1-2 |1
310 1 (-2 1 3 1 (-2 |1
410 |0 |0 |1 |-2 4 1 |-2
row ptr|0 8 (11|13
col ptr |0 12 (1]|2 (3|23 |43 |4
val -2 211 |1 |-2]|1 Il 211 |1 |-2
04.10.2017 OpenACC Performance Optimization

Mitglied der Helmholtz-Gemeinschaft

#) JULICH

FORSCHUNGSZENTRUM

Sparse Matrix Vector Product (SpMV)

42 :#pragma acc parallel loop

43:for (int row=0; row<num rows; ++row)

44 {
45:
46:
47 :
48:
49:
50:
51:
52:
53:}

yv[lrow] = 0.0;
const int row start = row ptr[row];
const int row end = row ptr[row+l];
for (int col idx=row start; col idx<row end; ++col 1idx)
{
ylrow] += val[col idx] * x[col ptr[col idx] 1;

04.10.2017 OpenACC Performance Optimization 4

#) JULICH

FORSCHUNGSZENTRUM

SpMV on K80

pgcc -fast -acc -ta=tesla -Minfo=accel spmv.c -0 spmv
main:

36, Generating
copyin (row ptr[:num rows+l],col ptr[:num vals],val[:num vals],x[:num rows])

Generating copy (y[:num rows])
42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang, vector (128) /* blockIdx.x threadIdx.x */
48, Complex loop carried dependence of y-> prevents parallelization
Loop carried reuse of y-> prevents parallelization

./ spmv

Runtime 0.148565 s.

Mitglied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 5

ied der Helmholtz-Gemeinschaft

SpMV on K80

%

NVIDIA Visual Profiler

JULICH

FORSCHUNGSZENTRUM

[=| Process "spmv" (31010)
(=] Thread 3273211840
- Driver AP
- Profiling Overhe ad
= [0] Tesla K80
[=] Context 1 {CUDA)
L F MemGpy (HtoD)
L SF MemGpy (DioH)
[=] Compute
L 57 100.0% main_42_gpu
[=] Streams

L Stream 13

Gl Analysis 82 [Defails & Console T Settings

i I i} Export PDF Report

various analysis stages o help you understand the
optimization opportunities in your application. Cnos
you become familiar with the optimization process,
you can explore the individual analysis stages in an
unguided mode. When optimizing your application it
is important to fully utilize the compute and data
movement capabilities of the GPU. To do this you
should lock at your application’s overall GPU usage
as well as the performance of individual kernels.

[y, Examine GPU Usage

Determine your application's overall GPU usage. This analysis
timeline. so your will be run

The guided analysis system walks you through the =

once to collect it if it i not already available

lily, Examine Individual Kemels

Determine which kernels are the most performance critical
and that have the most opportunity for improvement. This
analysis requires utilization data from every kernel, so your
application will be run once to collect that data if it is not :I

Result:

Select or highlight a single interval to see properties

4+ a X
Eile View Window Run Help & |I
- Wom & - [3
% "NewSessioni 2 = B [Propetties &
Lﬂs CIEIES U?S U?I5S 1IE 12‘55 T?E

04.10.2017

OpenACC Performance Optimization

Mitglied der Helmholtz-Gemeinschaft

SpMV on K80

[=| Process "spmv" (31010)
(=] Thread 3273211840
- Driver AP
- Profiling Overhe ad
= [0] Tesla K80
[=] Context 1 {CUDA)
L F MemGpy (HtoD)
L SF MemGpy (DioH)
[=] Compute
L 5F 100.0% main_42_gpu
[=] Streams

L Stream 13

5l Analysis 52 [Details & Console T

= ¢

The analysis results on the right indicate pote ntial

Select or highlight a single interval to see properties

% NVIDIA Visual Profiler A !

File View Window Run Help s

BEHBES% - [a@alfF rifEaa

% "NewSessioni 2 = B [Propetties & = 8
Lns 0255 055 0.75s 1s 1255 158

the GPU's available compute and data movement
capabiliies. You should examine the information
provided with each result to determine if you can make
changss to your application to increass GPU utilization

[= (]
i} Export PDF Report Result

& Low Memcpy/Compute Overlap [0 ns / 358 552 ms = 0% |
The percentage of time when memcpy is being performed in parallel with compute is low. More...
& Low Kernel Concurrency [0 ns / 926,272 ms = 0% |

: s el = The percentage of time when two kemels are being executed in parallel is low. More...

problems in how your app! 1is taking age of
& Low Memcpy Overlap [0 ns/ 8236 ms = 0% |
The percentage of time when two memory copies are being performed in parallel is low. Moare...
i Compute Utilization
iy, Examine Individual Kemels The device timeline shows an estimate of the amount of the total compute capacity being used by the kernels executing on the device.

You can ako examing the performance of individual karnels to
sxpose additional optimization opportunities

04.10.2017

OpenACC Performance Optimization

JULICH

FORSCHUNGSZENTRUM

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler o |
File View Window Run Help |
= W gy & - [

% "NewSessioni 2 = 0

= Properties 22 = 8

Lﬂs 025s 05s 075s 15 1255 15s

[=| Process "spmv" (31010)
[=] Thread 3273211840
- Driver AP
- Profiling Overhe ad
= [0] Tesla K80
[=] Context 1 {CUDA)
L F MemGpy (HtoD)
L SF MemGpy (DioH)

= Compue s S —
T 1000 main_22_ o N

=] Streams

Gl Analysis 82 [Defails & Console T Settings

Select or highlight a single interval to see properties

Result:

i} Export PDF Report

i Kernel Optimization Priorities

The tollowing kernels are ordered by optimization importance based on execution time and achieved occupancy. Optimization of higher ranked kernels (those that
appear first in the list) is more likely to improve performance compared to lower ranked kernels.

The results on the right show your application’s kemels Rank | Description
ordered by potential for performance improve ment.
Starting with the kernels with the highest ranking, you
should select an entry from the table and then perform
kernel analysis to discover additional optimization
opportunities

10C [10 kernel i

lily, Perform Kernel Analysis |
n

Sekct a karnel from the table at right or from t?—a timaline to
enable kernel analysis. This analysis requires detaild profiling
data. so your application will be run once to collect that data for
the kernel if it is not already avaiable

i‘-_"& Perform Additional Analysis ‘

You can colect additional information fo help identify kernels with
potential performance problems. Aftar running this analyss. sskect
any of the new results at right to highlight the individual kermels for
which the analysis applies.

ied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 8

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler o |
File View Window Run Help |

] b= & - [&S

% "NewSessioni 2 =

B [Properties % = 8
Lns 0.25s 055 0755 1s 1255 158

[=| Process "spmv" (31010)
(=] Thread 3273211840
- Driver AP
- Profiling Overhe ad
= [0] Tesla K80
[=] Context 1 {CUDA)
L F MemGpy (HtoD)
L SF MemGpy (DioH)

= Compue s S —
T 1000 main_22_ o S — R —

=] Streams

- Swwam13 I —— —

Select or highlight a single interval to see properties

Gl Analysis 82 [Defails & Console T Settings

sy, Export PDF Report Result
i Kernel Performance Is Bound By Instruction And Memory Latency

L

This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "Tesla K80". These utilization levels indicate
that the performance of the kernel is most likely limited by the latency of arithmetic or memory operations. Achieved compute throughput and’or memory
bandwidth below 60% of peak typically indicates latency issues.

The first step in analyzing an individual kernel is to = .
determing it the performance of the kernelis bounded G
by computation, memory bandwidth, or instruction/

memory latency. The results at right indicats that the
perormance of kemel "main_42_gpu"is most likely L
limited by instruction and memary latency.

i, Perform Latency Analysis

Tha most likely bottieneck to performance for this kernel is
instruction and memory ktency so you shoukd first perfarm
instruction and memory kiency analysis fo determine how it is
limiting performance. 30%

Utilization

iy, Perform Compute Analysis

[, Perform Memory Bandwidth Analysis

Compute and memary banhwidth are likely not the primary || Flinctan Link (Arthimatty Memary (Device)

ied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 9

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler ARSI 8 i
Eile View Window Run Help |
- Wom & - [3
% "NewSessioni 2 = B [Propetties & = 8
Lns 0255 05s 0.75s 1s 1255 155
=] Process "spmv" (31010) Select or highlight a single interval to see properties
[=| Thread 3273211840
- Driver AP|
- Profiling Overhe ad
= [0] Tesla Kgo
[=] Context 1 {CUDA)
L 5F MemGpy (HtoD)
L SF MemGpy (DioH)
=1 Compute N N E—
7 1000% min_42_gpu N s I B
=] Streams
- Svean 13 I —— ————
Gl Analysis 82 [Defails & Console T Settings .. B
i [ilyl Export PDF Report Result =
& Achieved Occupancy Is Low I
Qccupancy is a measure of how many warps the kemel has active on the GPU, relative to the maximum number of warps supported by the GPU. Theoretical
occupancy provides an upper bound while achieved cccupancy indicates the kemel's actual occupancy. The kernel's achieved cccupancy of 42.1% is
significantly lower than its theoretical occupancy of 100%. Most likely this indicates that there is an imbalance in how the kernel's blocks are executing on the
SMs so that all SMs are not equally busy over the entire execution of the kemel. The following chart shows the utilization of each multiprecessor during
execution of the kemael.
Opfimization: Make sure that all blocks are doing roughly the same amount of work. If may also help to increase the number of blocks executed by the
Instruction and memory latency limitthe performance = || kemel. More...
of a kernel when the GPU does not have encugh work
&= to kesp busy. The results at right indicate that the GPU
o does not have enough work because differences in 100%
‘g the execution time of the kernel's blocks leads to poor e
@ load balancing across the SMs 0,
T 80%
] by, Examine Occupancy 70% |
<5 c
(ID Occupancy & a measure of how many wargs the kemel has 9 60%
N active on the GPU. relative to the maximum number of warps E 50%
° supported by the GPU. Theoretical occupancy provides an _—; N
< upper bound whik achieved occupancy indicates the kernels 5 e
g actual occupancy. For this kernel. examining occupancy may 30%
) not be usaful untilyou modity the kemelto better baknce the i
I block sxecution times across all SMs. whE
g =l 10% =
o
o

04.10.2017 OpenACC Performance Optimization 10

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler
File View Window Run Help

- b =g & - [R G

% "NewSessioni 2 =

B [Properties % = 8
Lns 0.25s 055 0755 1s 1255 158

[=| Process "spmv" (31010)
(=] Thread 3273211840
- Driver AP
- Profiling Overhe ad
= [0] Tesla K80
[=] Context 1 {CUDA)
L F MemGpy (HtoD)
L SF MemGpy (DioH)

Select or highlight a single interval to see properties

=1 Compute I S S
7 100.0% main_42_gpu e e E—
=] Streams
- Svean 13 ——— —————
Gl Analysis 82 [Defails & Console T Settings .. B
lshy, Export PDF Report Re_sult o
i Occupancy Is Not Limiting Kernel Perfermance [=]
The kemel's block size, register usage, and shared memory usage allow it to fully utilize all warps on the GPU. More...
Variable Achieved Theoretical | Device Limit | Grid Size: [65535,1,1] (65535 blocks)Block Size: [128,1,1] (128 threads) |
Occupancy Per SM
Active Blocks 16 16 T —
0 1 2 3 4 5 86 7 8 9 10 11 12 13 14 15 16
& o ~| || |Active Warps 26.97 84 B4]
Instruction and memory latency limit the performance 0O 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
of a kermel when the GPU does not have enough work ; 8 L]
&= to kesp busy. The results at right indicate that the GPU Active Threads 2048 2048 0 256 512 768 1024 1280 1538 1792 2048
© does not have enough work because differences in T Y e S
‘E the execution ime of the kernel's blocks leads to poor Gy cEkR talzrs Tt P4 15%% 3084 A5% B 755 90% 100% | |_|
g load balancing across the SMs.
= Warps
[
£ iy Examine Qocupancy Threads/Block 128 1024 - 1
0 128 256 384 512 840 768 896 1024
(ID Occupancy & a measure of how many wargs the kemel has r— — .
i arps/Blocl 4 32
g active on the GPU. relative to the maximum number of warps I) > i H H 10 12 14 16 18 20 22 24 26 28 30 a2
(=) supparted by the GPU. Thearetical occupancy provides an
< upper bound whik achkved ocoupancy ind ales the kerns|s Block Limit 16 16 e ——
g actual occupancy. For this kernel. examining may 0 1 < 3 4 5 6 = 8 9 10 11 12 13 14 15 16
(7] not be usaful until you modify the kernelto better balance the Registers
I block sxecution times across all SMs.
-
g Al |Reﬂistersﬂhreaﬂ 0 255 | — d | =1
o
o

04.10.2017 OpenACC Performance Optimization 11

ied der Helmholtz-Gemeinschaft

%

File View Window Run Help

SpMV on K80

NVIDIA Visual Profiler

- b =g & - [R G

% "NewSessioni 2

B [Properties %]
Lns 0255 05s 0.75s 1s 1255 155
=] Process "spmy” (31010) Select or highlight a single interval to see properties
[=| Thread 3273211840
- Driver AP|
- Profiling Overhe ad
= [0] Tesla Kgo
[=] Context 1 {CUDA)
L 5F MemGpy (HtoD)
L SF MemGpy (DioH)
= Compute s S A
7 1000% min_42_gpu s I I
=] Streams
- Sveam 13 s —
[Analysis 52 [Detals El Console Settings s a
@ Export PDF Report Rﬁlsalf!tuuuulmcvm paransnan, &
Constant - A constant load is blocked due to a miss in the constants cache.
Instruction Fetch - The next assembly instruction has not yet been fetched.
Texture - The texture sub-system is fully utilized or has too many outstanding requests.
Synchronization - The warp is blocked at a __syncthreadsi() call.
Stall Reasons
memory
dependency exacution
dependency
Occupancy i a measure of how many warps the kernel has instruction
active on the GPU. relative to the maximum number of warps fetch
supported by the GPU. Theorelical occupancy provides an
upper bound while achieved occupancy indicates the kernels not
actual occupancy. For this kernel, examining occupancy may selected
not be usaful until you modify the kernelto better baknce the memory
block execution timas across all SMs. throttie
constant
| |y, Examine Stall Reasons I pipe
busy —
When both achieved and theoretical occupancy are high. the other
stall reasons can provide insight into why latency is stillan .
issue for the kernel. For this karnal examining stalls may not synchronization
be useful until you modify the kernel to better balance the
block exacution times.
i Renun Analvsis [= =

04.10.2017

OpenACC Performance Optimization

JULICH

FORSCHUNGSZENTRUM

12

#) JULICH

FORSCHUNGSZENTRUM

Disable usage of
texture cache to see

Sp MV on K80 uncoaleseced

memory aCCesses

pgcc -fast -acc -ta=tesla:cc30,lineinfo -Minfo=accel spmv.c -0 spmv
e ———

main: Better Profiling
36, Generating Information

copyin (row ptr[:num rows+l],col ptr[:num vals],val[:num vals],x[:num rows])
Generating copy (y[:num rows])
42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang, vector (128) /* blockIdx.x threadIdx.x */
48, Complex loop carried dependence of y-> prevents parallelization
Loop carried reuse of y-> prevents parallelization

./ spmv

Runtime 0.177488 s.

Mitglied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 13

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler
File View Window Run Help

] b= & - [&S

% "NewSessioni 2 =

B [Properties 3 = 8

Lﬂs 05s 1s 15s 2s 25s

[=| Process "spmv" (313886)
[=] Thread 2686713792
- Driver AP
- Profiling Overhe ad
= [0] Tesla K80
[=] Context 1 {CUDA)
L F MemGpy (HtoD)
L SF MemGpy (DioH)

[=| Compute main... main... | main... main... main... | main... main_...| main... main...
- 5 100.0% main_42_gpu main... main... | main... main... main... | main.. main_..|main.. main...

=] Streams

L Stream 13 main... main... [main... main... main.. | main... main_..| main... main

Select or highlight a single interval to see properties

O Analysis 32 [Details & Console

Settings
sy, Export PDF Report Result
i Kernel Performance Is Bound By Memory Bandwidth

L

For device "Tesla K80" the kemel's compute utilization is significantly lower than its memoary utilization. These utilization levels indicate that the performance

of the kernel is most likely being limited by the memory system. For this kernel the limiting factor in the memory system is the bandwidth of the load/store
instruction units within the multiprocessors.

The first step in analyzing an individual kernel is to 1= .
determing it the performance of the kernelis bounded G
by computation, memory bandwidth, or instruction/ 0%
memory latency. The results at right indicats that the
&= perormance of kemel "main_42_gpu"is most likely L
© limited by memory bandwidth. 0%
o Y 3
@ Al : ; 5 a0 Il tiemory operations
c bily, Perform Memory Banchwidth Analysis 2 =
D E e I controkfow operations
= Tha most likely bottieneck to performance for this kernel is = . Arithmet ’
o memory bandwidth so you should first perform memary = 40% I Avithmeti operatians
) bandwidth analysis to determine how it is limiting performanca I temory (Load/Store Instruction Unit)
N 30%
=
©° [, Perform Compute Analysis | — o
2 20% L
% iyl Perform Latency Analysis i 10%
T
Co ite and instructi d e (=] t
E tnar:‘r’i\r‘na;"pel;‘iorrr:a:cl?:::n::er:sr’forth";y)z;:e:. buu’tn;:u ll Compute Memory (Load/Store Instruction Unit) j
k=l
k=l
o

04.10.2017 OpenACC Performance Optimization 14

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler

File View Window Run Help

CEHEBRGS - (@@l fF RI[EE &

§ "NewSession1 2 = B & Properties & = i
{Os 05s 1s |.§s 2s 2.?5

[=] Process "spmv" (31386) Select or highlight a single interval to see properties
[=I Thread 2686713792
- Driver AP|
- Profiling Overhead
[=] [0] Tesla K80
[=] Context 1 (CUDA)
-5 MemCpy (HtoD)
- 5 MemCpy (DtoH)

) Compute main..main... | main... main... main. | main.. main_.|main.. main..|main..|
- 57 100.0% main_42_gpu main.. main... main... | main... main_.. m

|=| Streams
- Steam 13 main i~ main] main"—main~" main-——main | mn-|

[Analysis 32 [Details & Console [T Settings A,

l_ = | i Export PDF Report i o
& Global Memory Alignment and Access Pattern W
Memory bandwicth is used most efficiently when each global memory load and store has proper alignment and access pattern.
Optimization: Select each entry below to open the source code to a global load or store within the kernel with an inefficient alignment or access
pattern. For each load or store improve the alignment and access pattern of the memory access. More...

v Line/File :spmv.c -/homeb/zam/jkraus/workspace/JSC-GPU-Course/OpenACC/Performance-Optimization/exercises/C/task0

47 Global Load L2 Tr i A =5, Ideal Ti i A =4[1268844 L2 transactions for 253769 total executions] =
Memory bandwidth limits the performance of a kernel 50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 8 [105247013 L2 transactions for 3288976 total executions]
when one or more memories in the GPU cannot provide
data at the rate requested by the kernel. The results at 50 Global Load L2 Transactions/Access = 8.7, Ideal Transactions/Access = 8 [28588163 L2 transactions for 3288976 total executions]
right indicate that the kernel is limited by the bandwidth 50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 4 [8040999 L2 transactions for 251287 total executions]
available to the device memory.

50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 8 [105247013 L2 transactions for 3288976 total executions]

il Rerun Analysis | 50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 8 [8040999 L2 transactions for 251287 total executions]

"::um"::('ﬂy "“:ﬁ'?’"a'yﬂ" Need o rerun your appicaton o 50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 4 [105247013 L2 transactions for 3288976 total executions |
updat 5 analyss.

50 Global Load L2 Ti i A =9, Ideal Ti i A = 8 [2261538 L2 transactions for 251287 total executions]

50 Global Load L2 Transactions/Access = 8.6, Ideal Ti i A =8 L2 ions for 3288976 total executions |

50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 4 [105247013 L2 transactions for 3288976 total executions]

Mitglied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 15

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

| % NVIDIA Visual Profiler
File View Window Help
e e
§ *NewSession1 =l spmv.c R = B [Properties & = m
ylrow] = 0.0; zll
const int row_start = row_ptr[row];
il const int row_snd = row_ptr[row+l]; Select or highlight a single interval to see properties
i for (int col_idx = row_start; col_idx < row_end; ++col_idx)
{
= IMultiple markers at this line JE
- Global Load L2 Ti ions/A = 32, |deal Ti ions/A =4] L2 ions for 251287 total executions]
- Global Load L2 Ti i A = 8.7, Ideal T i A = 8 [28588163 L2 transactions for 3288976 total executions]
- Global Load L2 Ti ions/A =32, Ideal Ti ions/A = 8 [105247013 L2 transactions for 3288976 total executions]
- Global Load L2 Ti i =32, Ideal Ti ions/A =8] L2 ions for 251287 total executions]
- Global Load L2 T ions/A = 32, Ideal Ti ions/A =4[105247013 L2 ions for 32¢ total ions |
- Global Load L2 T i = 8.6, Ideal Ti ions/A =8] L2 ions for 3288976 total executions]
- Global Load L2 Tt ions/A =9, Ideal Ti ions/A =8[2261538 L2 ions for 251287 total executions]
for (1n: row=0; row<num_rows; ++row)
f =l
[2]
[Analysis 32 [Details & Console [Settings (= [
I_ B ¢ ’ i Export PDF Report Heeul =
& Global Memory Alignment and Access Pattern I
Memory bandwidth is used most efficiently when each global memory load and store has proper alignment and access pattern.
Optimization: Select each entry below to open the source code to a global load or store within the kernel with an inefficient alignment or access
pattern. For each load or store improve the alignment and access pattern of the memory access. More...

v Line/File :spmv.c -/homeb/zam/jkraus/workspace/JSC-GPU-Course/OpenACC/Performance-Optimization/exercises/C/task0

47 Global Load L2 Ti i A =5, Ideal Ti i A =4 [1268844 L2 transactions for 253769 total executions] =

Memory bandwidth limits the performance of a kernel Global Load L2 Transactions/Access = 32, |deal Transactions/Access [105247013 L2 transactions for 3288976 total executions |
when one or more memories in the GPU cannot provide
data at the rate requested by the kernel. The results at 50 Global Load L2 Transactions/Access = 8.7, Ideal Transactions/Access = 8 [28588163 L2 transactions for 3288976 total executions]
nghtndicata inat the kamel & |imited:by the:bandwidih 50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 4 [8040999 L2 transactions for 251287 total executions]
available to the device memory.

50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 8 [105247013 L2 transactions for 3288976 total executions]

il Rerun Analysis 50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 8 [8040999 L2 transactions for 251287 total executions]

"pl/‘f’”'e"‘t‘:“?“y "“:ys'?’"e'yﬂ“ need 1o rerun your appicaton o 50 Global Load L2 Transactions/Access = 32, Ideal Transactions/Access = 4 [105247013 L2 transactions for 3288976 total executions |
updat 5 analyss.

50 Global Load L2 Ti i A =9, Ideal Ti i A = 8 [2261538 L2 transactions for 251287 total executions]

50 Global Load L2 Transactions/Access = 8.6, Ideal Tr i A =8 L2 ions for total ions]

50 Gilobal Load L2 Transactions/Access = 32, Ideal Transactions/Access = 4 [105247013 L2 transactions for 3288976 total executions]

Mitglied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 16

haft

Mitglied der Helmholtz-Gemeinscl|

#) J0LICH

FORSCHUNGSZENTRUM

Memory Coalescing

« Coalesced access:

A group of 32 contiguous threads (,warp“) accessing
adjacent words

Few transactions and high utilization
« Uncoalesced access:

- A warp of 32 threads accessing scattered words
- Many transactions and low utilization

* For best performance threadldx.x should access

contiguously

04.10.2017 Coalesced OpenACC Performance Optimization Uncoalesced 17

haft

Mitglied der Helmholtz-Gemeinsc

#) JULICH

FORSCHUNGSZENTRUM

OpenACC: 3 Levels of Parallelism

<€<—— Vector —>

Workers

Gang

<€<—— Vector ——>

04.10.2017

Workers

Gang .

OpenACC Performance Optimization

Vector threads work
in lockstep
(SIMD/SIMT
parallelism)

Workers have 1 or
more vectors

Gangs have 1 or
more workers and
share resources
(such as a cache, the
SM, etc.)

Multiple gangs work
independently of
each other

18

Mitglied der Helmholtz-Gemeinschaft

#) J0LICH

FORSCHUNGSZENTRUM

CUDA Execution Model

Software Hardware
=] Threads are executed by scalar processors
Scalar
Thread Processor
Thread blocks are executed on multiprocessors
o
22222222 =55 Thread blocks do not migrate
=
s
Several concurrent thread blocks can reside on one
Thread . .. ,
Block Multiprocessor multiprocessor - limited by multiprocessor

resources (shared memory and register file)

22222 22222 22222 A kernel is launched as a grid of thread blocks

Grid Device Blocks and grids can be multi dimensional (x,Y,z)

04.10.2017 OpenACC Performance Optimization 19

aft

Mitglied der Helmholtz-Gemeinsch

CUDA Warps

&Y -

Thread
Block

04.10.2017

32 Threads

32 Threads

32 Threads

Warps

>

s

Multiprocessor

#) J0LICH

FORSCHUNGSZENTRUM

A thread block consists of a
groups of warps

A warp is executed
physically in parallel (SIMT)
on a multiprocessor

Currently all NVIDIA GPUs
use a warp size of 32

OpenACC Performance Optimization 20

Mitglied der Helmholtz-Gemeinschaft

#) J0LICH

FORSCHUNGSZENTRUM

Mapping OpenACC to CUDA

The compiler is free to do what it wants

* In general
gang: mapped to blocks (COARSE GRAIN)
worker: mapped to threads (FINE GRAIN)
vector: mapped to threads (FINE SIMD/SIMT)

Exact mapping is compiler dependent

Performance Tips

Use a vector size that is divisible by 32
Block size is num_workers * vector_length

04.10.2017 OpenACC Performance Optimization 21

haft

Mitglied der Helmholtz-Gemeinscl|

#) J0LICH

FORSCHUNGSZENTRUM

OpenACC gang, worker, vector clauses

« (Gang, worker, vector can be added to a loop clause

« Control the size using the following clauses on the
parallel region

Parallel: num_gangs(n), num_workers(n), vector_length(n)
Kernels: gang(n), worker(n), vector(n)

#fpragma acc parallel loop gang worker

for (int row=0; row<num rows; ++row)

{

#fpragma acc loop vector

for (int col idx=row start; col idx<row end; ++col idx)

[—A gang, worker, vector appear once per parallel region]

04.10.2017 OpenACC Performance Optimization 22

#) J0LICH

FORSCHUNGSZENTRUM

Understanding Compiler Output

42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang, vector(128) /* blockIdx.x threadIdx.x */

« Compiler is reporting how it is assigning work to the
device

Gang is being mapped to blockldx.x
Vector is being mapped to threadldx.x
Worker is not used

* This application has a thread block size of 128 and
launches as many blocks as necessary

aft

Mitglied der Helmholtz-Gemeinsch

04.10.2017 OpenACC Performance Optimization 23

Mitglied der Helmholtz-Gemeinschaft

#) JULICH

FORSCHUNGSZENTRUM

SpMV

42 :#pragma acc parallel loop
43:for (int row=0; row<num rows; ++row) Want this loop to parallelize
44 with vector parallelism
45: vy[row] = 0.0;
46: const int row start = row ptr[row];
47: const int row end = row ptr[row+l];
48: for (int col idx=row start; col idx<row end; ++col idx)
49: {
50: ylrow] += val[col idx] * x[col ptr[col idx] 1;
51: }
48, Complex loop carried dependence of y—-> prevents parallelization

Loop carried reuse of y-> prevents parallelization

04.10.2017 OpenACC Performance Optimization 24

Mitglied der Helmholtz-Gemeinschaft

#) JULICH

FORSCHUNGSZENTRUM

SpMV

42 :#pragma acc parallel loop

43:for (int row=0; row<num rows; ++row)

44 {
45:
46:
47 :
48:
49:
50:
51:
52:
53:}

double y tmp = 0.0;
const int row start = row ptr[row];
const int row end = row ptr[row+l];
for (int col idx=row start; col idx<row end; ++col 1idx)
{
y tmp += val[col idx] * x[col ptr[col idx] 1;

— Sum up in temporary
to remove loop
carried dependency

y[row]

04.10.2017 OpenACC Performance Optimization 25

#) JULICH

FORSCHUNGSZENTRUM

SpMV on K80

pgcc -fast -acc -ta=tesla -Minfo=accel spmv.c -0 spmv
main:

36, Generating
copyin (row ptr[:num rows+l],col ptr[:num vals],val[:num vals],x[:num rows])

Generating copy (y[:num rows])
42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang /* blockIdx.x */
48, #pragma acc loop vector(128) /* threadIdx.x */
50, Sum reduction generated for y tmp

48, Loop 1s parallelizable

./ spmv

Runtime 0.166006 s.

Mitglied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 26

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

| % NVIDIA Visual Profiler

File View Window Run Help

CEHEBRGS - (@@l fF RI[EE &

§ "NewSession1 2 = B & Properties & = i
{05 0,?5 1s 15s 2s 25s 3s

[=| Process "spmv" (31507)
[=| Thread 2406764480
- Driver API
- Profiling Overhead
[=] [0] Tesla K80
[=] Context 1 (CUDA)
-5 MemCpy (HtoD)
-5 MemCpy (DtoH)

Select or highlight a single interval to see properties

[=| Compute
- 100.0% main_42_gpu g L - " ... main_..
|=| Streams
L Stream 13 - ... main_.. main_.. main_... main_... main_.. main_...
[Analysis 32 [Details & Console [T Settings A,

Export PDF Report =
i Kernel Performance Is Bound By Instruction And Memory Latency

This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "Tesla K80". These utilization levels indicate
that the performance of the kernel is most likely limited by the latency of arithmetic or memory operations. Achieved compute throughput and/or memory
bandwicth below 60% of peak typically indicates latency issues.

The first step in analyzing an individual kernel is to (= e

determine if the performance of the kernel is bounded 100%

by ion, memory bandwidth, or i i 20%

memory latency. The results at right indicate that the .
- performance of kernel "main_42_gpu" is most likely 0%
© limited by instruction and memory latency. 709
= i i on. 70%
[5}

— 3 - .

2 i, Perform Latency Analysis S 50% [Memory operations
kol E i I Controk-flow operations
= The most likely bottkeneck to performance for this kernel is = S - Arithmeti i
[instruction and memory latency so you should first parform 5 40% ametcommions
0] instruction and memory katency analysis to determine how it is Il Memory (L1/Shared)
N limiting performance. 30%
= -
=] . 5 20%
< [y, Perform Compute Analysis | =
£ 10%
£ g, Perform Memory Bandwidth Analysis |
g Compute and memory bandwidth are likely not the primary || Compuls Mamory (L1/5hared) =
k=l
2
=)
=
=

04.10.2017 OpenACC Performance Optimization 27

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

| % NVIDIA Visual Profiler

File View Window Run Help

DEEESS - @aQalr rijEEs

§ "NewSession1 2 = B I Properties & = i
{05 0,?5 1s 1,?5 2s 2.?5 3s

[=| Process "spmv" (31507) Select or highlight a single interval to see properties
[=| Thread 2406764480
- Driver AP|
- Profiling Overhead
[=] [0] Tesla K80
[=] Context 1 (CUDA)
L 57 MemCpy (HtoD) [
- 5 MemCpy (DtoH)
[=| Compute
5 100.0% main_42_gpu
|=| Streams
L Stream 13 main_... main_... main_... main_... main_.. main_...

[Analysis 32 [Details & Console [T Settings A,

o

Export PDF Report

1]

i Occupancy Is Not Limiting Kernel Performance
The kernel's block size, register usage, and shared memory usage allow it to fully utilize all warps on the GPU. More...

Variable Achieved Theoretical | Device Limit ‘ Grid Size: [65535,1,1] (65535 blocks)Block Size: [128,1,1] (128 threads)

Occupancy Per SM

Active Blocks 16 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Instruction and memory latency limit the performance = Active Warps 63.89 84 84 m
of a kernel when the GPU does not have enough work 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 |
- 0 lsep biiay, The parfonmance of lakncyslimiisd Active Threads 55 5ok —eeeeeeeeeeee———
< kernels can often be improved by increasing 0 256 512 768 1024 1280 1536 1792 2048
‘S occupancy. Occupancy is a measure of how many Occupancy 99.8% 100% 100% . _ ____ . ___]
g warps the kernel has active on the GPU, relative to the 0% 15% 30% 45% 60% 5% 90% 100%
D maximum number of warps supported by the GPU. Warps
e Theoretical occupancy provides an upper bound
[while achieved occupancy indicates the kermel's Threads/Block 128 1024 — 1
(? actual occupancy. 0 128 256 384 512 640 768 896 1024
s —]
E Tay Examing Stall Fieasons Wapetlock 4 2 0 2 4 6 B8 10 12 14 16 18 20 22 24 26 28 30 a2
imil e —————
g When both achieved and theoretical occupancy are high. the Block Limit 16 18 0 1 2 3 4 5 B 7 8 9 10 11 12 13 14 15 16
% stall reasons can provide insight into why latency i stillan Regi
— issue for the kernel. For this kernel. examining stalls may not egisters
% be usaful until you modify the kernel to address the o J | J L'
k=l
2L
2
=

04.10.2017 OpenACC Performance Optimization 28

Mitglied der Helmholtz-Gemeinschaft

SpMV on K80

| 3

File View Window Run Help

NVIDIA Visual Profiler GRS

§ "NewSession1 2
LO s

FEEBEERGS - RQ@lF K I([EE 2

= B [Properties & = e

[=| Process "spmv" (31507)
[=I Thread 2406764480
- Driver API
- Profiling Overhead
[=] [0] Tesla K80
=] Context 1 (CUDA)
-5 MemCpy (HtoD)
-5 MemCpy (DtoH)
[=| Compute
- 7 100.0% main_42_gpu
|=| Streams
- Stream 13

iy, Export PDF Report

Instruction and memory latency limit the performance
of a kernel when the GPU does not have enough work
to keep busy. The performance of latency-limited
kernels can often be improved by increasing
occupancy. Occupancy is a measure of how many
warps the kernel has active on the GPU, relative to the
maximum number of warps supported by the GPU.
Theoretical occupancy provides an upper bound
while achieved occupancy indicates the kernel's
actual occupancy.

[Analysis 32 [Details & Console [T Settings A,

iy, Examine Stall Reasons

‘When both achieved and theoretical occupancy are high. the
stall reasons can provide insight into why latency is stillan
issue for the kernel. For this kernel. examining stalls may not

Select or highlight a single interval to see properties

main_... main_... main_... ... main_.. main_.. main_.. main_.. main_.. main_...

main_... main_.. main_... main_... main_.. main_.. main_.. main_.. main_.. main_.

main_... main_... main_... main_... main_... main_... main_.. man_.. main_...

It

BUULIVITEY &1 pa s, &
Constant - A constant load is blocked due to a miss in the constants cache.
Instruction Fetch - The next assembly instruction has not yet been fetched.
Texture - The texture sub-system is fully utilized or has too many outstanding requests.
Synchronization - The warp is blocked at a __syncthreads() call.

Stall Reasons

execution
dependency

instruction
fetch

memory
dependency

texture

synchronization

be usaful until you modify the kernel to address the

04.10.2017

OpenACC Performance Optimization

JULICH

FORSCHUNGSZENTRUM

29

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

‘ NVIDIA Visual Profiler S E3

Eile) View! Window® Run Heip |
DEEESS - @Qalr rijEes
§ "NewSession1 2 = B [Properties % S |

LOs 0,?5 1s 15s 2s 25s 3s

[=| Process "spmv" (31507) Select or highlight a single interval to see properties
[=I Thread 2406764480
- Driver AP|
- Profiling Overhead
[=] [0] Tesla K80
[=] Context 1 (CUDA)
-5 MemCpy (HtoD)
- ¥ MemCpy (DtoH)

[= Compute main_.. main_.. main_.. main_... main_.. main_... main_.. main_.. main_...
- 100.0% main_42_gpu 3 ... main_.. main_.. main_.. main_.. main_.. main_.. main_.. main_..
|=| Streams
- Stream 13 " .. main_.. main_... main_... main_.. main_.. main_.. main_.. main_..
[Analysis 32 [Details & Console [T Settings A, EEE

IE E ¢ | iy, Export PDF Report

I+

& Low Warp Execution Efficiency

= 7 e D ge of active threads in each d warp. ing warp ion efficiency will increase utilization of
the GPU's compute resources. The kemel's warp execution efficiency of 73.2% is less than 100% due to divergent branches and predi d i i
predicated instructions are not taken into account the warp execution efficiency for these kemels is 100%.
Optimization: Reduce the amount of intra-warp divergence and predication in the kernel. More... | ||

i Function Unit Utilization
GPU compute resources limit the performance of a 21| | Different types of instructions are executed on different function units within each SM. Performance can be limited if a function unit is over-used by the

kernel when those resources are insufficient or poorly instructions executed by the kernel. The following results show that the kernel's performance is not limited by overuse of any function unit.
utilized. Compute resources are used most efficiently Load/Store - Load and store instructions for local, shared, global, constant, etc. memory.

when all threads in a warp have the same branching Arithmetic - All arithmetic i ions il ing integer and floating-point add and multiply, logical and binary operations, etc.

and predication behavior. The results at right indicate Control-Flow - Direct and indiirect branches, jumps, and calls.

that a significant fraction of the available compute Texture - Texture operations.

performance is being wasted because branch and
predication behavior is differing for threads within a
warp.

|; iy, Show Kemel Profile - Instruction Executi

The kernel profile shows the exacution count. inactive High
threads. and predicated threads for each source and
assambly line of the kernel. Using this information you can
pinpoint portions of your kernel that are making inefficient use

of compute resource due to di and ;l _ L’

Level

Mitglied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 30

Mitglied der Helmholtz-Gemeinschaft

#) J0LICH

FORSCHUNGSZENTRUM

SpMV on K80

42 :#pragma acc parallel loop

43:for (int row=0; row<num rows; ++row) ———— — gang

44 :{

45: double y tmp = ; vector (128)
46: const int row start = row ptr[row];

47: const int row end = row ptr[row+l];

48: for (int col idx=row start; col idx<row end; ++col idx)

49: {

50: y tmp += val[col 1dx] * x[col ptr[col idx]];

42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang /* blockIdx.x */
48, #pragma acc loop vector(128) /* threadIdx.x */
50, Sum reduction generated for y tmp

US. LU.ZULT UPCTIACUCU T CTTUTTTIAr vt UpPUIimnmZatiuri oL

Mitglied der Helmholtz-Gemeinschaft

#) J0LICH

FORSCHUNGSZENTRUM

Providing more information to the compiler

« We know that each row of the used Matrix has only
27 elements

« Using 128 threads for 27 elements does not make
sense

« Let's tell the compiler to use fewer threads for each
row

04.10.2017 OpenACC Performance Optimization 32

Mitglied der Helmholtz-Gemeinschaft

#) JULICH

FORSCHUNGSZENTRUM

SpMV on K80

42:#pragma acc parallel loop vector length (32)

43:for (int row=0; row<num rows; ++row) ———— gang

44 :{

45: double y tmp = 0.0; vector (32)

46: const int row start = row ptr[row];

4°7: const int row end = row ptr[row+l];

48: for (int col idx=row start; col idx<row end; ++col idx)
49: {

50: y tmp += val[col idx] * x[col ptr[col idx]];

42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang /* blockIdx.x */
48, #pragma acc loop vector(32) /* threadIldx.x */
50, Sum reduction generated for y tmp

US. LU.ZULT

OpenACC Performance Optimization

#) JULICH

FORSCHUNGSZENTRUM

SpMV on K80

pgcc -fast -acc -ta=tesla -Minfo=accel spmv.c -0 spmv
main:

36, Generating
copyin (row ptr[:num rows+l],col ptr[:num vals],val[:num vals],x[:num rows])

Generating copy (y[:num rows])
42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang /* blockIdx.x */
48, #pragma acc loop vector (32) /* threadIdx.x */
50, Sum reduction generated for y tmp

48, Loop 1s parallelizable

./ spmv

Runtime 0.119796 s. (was 0.166006 s)

Mitglied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 34

Mitglied der Helmholtz-Gemeinschaft

#) J0LICH

FORSCHUNGSZENTRUM

Keeping the code performance portable

* The device_type clause allows device specific
tuning without harming performance portability

« All clauses following a device_type clause only
apply for the given target:

fpragma acc parallel loop device type (NVIDIA)
vector length (32)

for (int row=0; row<num rows; ++row)

{

04.10.2017 OpenACC Performance Optimization 35

aft

Mitglied der Helmholtz-Gemeinsch

#) J0LICH

FORSCHUNGSZENTRUM

Tasks

« Task 0: Coalescing memory accesses (repeat)

« Task 1: Use vector_length to improve the warp
execution efficiency (repeat what was shown)

« Task 2: Use the guided analysis to further improve
the performance.

« Hint: Add worker level parallelism to increase the block size to
128 threads (required to get full occupancy).

04.10.2017 OpenACC Performance Optimization 36

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler
File View Window Run Help

CRERENSS-aaalfF RIEEE
§ "NewSession1 2

= B [Properties &2 = P
LO s 05s 1s 15s 2s

[=| Process "spmv" (31667)
[=I Thread 2193973184
- Driver API
- Profiling Overhead
[=] [0] Tesla K80
=] Context 1 (CUDA)
-5 MemCpy (HtoD)
L 57 MemCpy (DtoH)
[=I Compute main... main. main... main... main... main..

- 100.0% main_42_gpu main... main. main... main... main... main..
|=| Streams

L Stream 13 main... main...

Select or highlight a single interval to see properties

main... main... main..

[Analysis 32 [Details & Console [T Settings
IE E ¢ | iy, Export PDF Report Result
i Kernel Performance Is Bound By Instruction And Memory Latency

1]

This kernel exhibits low compute throughput and memory bandwictth utilization relative to the peak performance of "Tesla K80". These utilization levels indicate
that the performance of the kemel is most likely limited by the latency of arithmetic or memory operations. Achieved pi ighput and/or memory
bandwicth below 60% of peak typically indicates latency issues.

The first step in analyzing an individual kernel is to =

determine if the performance of the kernel is bounded 100%
by ion, memory bandwidth, or i i 90%
memory latency. The results at right indicate that the

performance of kernel "main_42_gpu" is most likely 80%

limited by instruction and memory latency. 70%

k=4

©

5

— 3 . .

2 iyl Perform Latency Analysis K Lo I Vemory operations
D 5 . I Controkflow operations
1= The most likely bottlenack to parformance for this kernelis = Sk - Arithmetx i

[5} instruction and memory latency so you should first parform 5 40% Emeteopamions
0] instruction and memory latency analysis to determine how it is Il Memory (Device)

N limiting performance. 30%

= 1

] = ¢ 20%

o eriorm Compute Analysis \—J

< Iy, Perform C te Anal
£ 10%

£ i, Perform Memory Bandwicth Analysis |

E Compute and memory bandwidth are likely not the primary ;| Compuls Mamary (Davica ;I
k=l
k=l
2
=)
=
=

04.10.2017 OpenACC Performance Optimization 37

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

| % NVIDIA Visual Profiler
File View Window Run Help

CEHEBRGS - (@@l fF RI[EE &

§ "NewSession1 2 = B I Properties & = i

os 055 1s 155 25

[=| Process "spmv" (31667) Select or highlight a single interval to see properties
[=| Thread 2193973184
- Driver AP|
- Profiling Overhead
[=] [0] Tesla K80
=] Context 1 (CUDA)
-5 MemCpy (HtoD)
- 5 MemCpy (DtoH)

[= Compute main... i main... ” main...
- 100.0% main_42_gpu main... - main... ” main...
|=| Streams
- Stream 13 main... main... - main...
[Analysis 32 [Details & Console [T Settings A,
@ l Export PDF Report =
& GPU Utilization Is Limited By Block Size W
g g size is likely p ing the kernel from fully utilizing the GPU. Device "Tesla K80" can simultaneously
execute up to 16 blocks on each SM. Because each block uses 1 warp to execute the block's 32 threads, the kernel is using only 16 warps on each SM. Chart
"Varying Block Size" below shows how changing the block size will change the number of warps that can execute on each SM.
Optimization: Increase the number of threads in each block to increase the number of warps that can execute on each SM. More...
‘Variable Achieved Theoretical | Device Limit ‘ Grid Size: [65535,1,1] (65535 blocks)Block Size: [32,1,1] (32 threads) l
Instruction and memory latency limit the = Occupancy Per SM I~
of a kernel when the GPU does not have enough work Active Block:
&= to keep busy. The performance of latency-limited tiveBlocks 16 18 0 {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
© kernels can often be improved by increasing . —— 1
‘LC, occupancy. Occupancy is a measure of how many Active Warps 15.97 16 64 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
g warps the kernel has active on the GPU, relative to the 5 I]
@ maxiimum number pf warps stipportadby the CEU. Aotive Threecs 512 2048 0 256 512 768 1024 1280 1536 1792 2048
e Theoretical occupancy provides an upper bound ~]
2 3 S 2 0% T
8 while achieved occupancy |nd|ca|ies ﬂl|e l?emel 's cupancy 25% 25% 100% % 15% 30% 5% 80% 75% 0% 100%
, actual occupancy. The results at right indicate that
N y can be i d by i ing the Warps
[=] number of threads in each block. 1
< - Threads/Block 32 1024 Lo =
1= B 1 0 128 256 384 512 640 768 896 1024
° ul, Examine Stall Reasons -]
T Warps/Block 1 32
= When both achisved and theoratical occupancy are high, the 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
2 stall reasons can provide insiaht into why tency s stilan > Dinnte Limis a4 1a e 1)
k=l
2
=)
=
=

04.10.2017 OpenACC Performance Optimization 38

Mitglied der Helmholtz-Gemeinschaft

#) JULICH

FORSCHUNGSZENTRUM

SpMV

42 :#pragma acc parallel loop device type (NVIDIA) gang worker

vector length (32) —__‘=====:J<gang, worker (4)
43:for (int row=0; row<num rows; ++row)

44 {

vector (32)

45: double y tmp = 0.0;

46: const int row start = row ptr[row];

47: const int row end = row ptr[row+l];

48: for (int col idx=row start; col idx<row end; ++col idx)
49: {

42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang, worker(4) /* blockIdx.x threadIdx.y */
48, #pragma acc loop vector(32) /* threadIdx.x */
50, Sum reduction generated for y tmp

J

04.10.2017 OpenACC Performance Optimization 39

aft

Mitglied der Helmholtz-Gemeinsch

#) J0LICH

FORSCHUNGSZENTRUM

Understanding Compiler Output (recap)

42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang, worker(4) /* blockIdx.x threadIdx.y */
48, #pragma acc loop vector(32) /* threadIdx.x */
50, Sum reduction generated for y tmp

« Compiler is reporting how it is assigning work to the
device

Gang is being mapped to blockldx.x
Worker is being mapped to threadldx.y
Vector is being mapped to threadldx.x

« This application has a thread block size of 4x32 and
launches as many blocks as necessary

04.10.2017 OpenACC Performance Optimization 40

#) JULICH

FORSCHUNGSZENTRUM

SpMV on K80

pgcc -fast -acc -ta=tesla -Minfo=accel spmv.c -0 spmv
main:

36, Generating
copyin (row ptr[:num rows+l],col ptr[:num vals],val[:num vals],x[:num rows])

Generating copy (y[:num rows])
42, Accelerator kernel generated
Generating Tesla code
43, #pragma acc loop gang, worker (4) /* blockIdx.x threadIdx.y */
48, #pragma acc loop vector (32) /* threadIdx.x */
50, Sum reduction generated for y tmp

48, Loop 1s parallelizable

./ spmv

Runtime 0.047039 s. (was 0.119796 s and 0.166006 s)

Mitglied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 41

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler 3 o X! 1
Eie View Window Run Help |
= = =
- bom & -3
% "NewSessioni 2 = B [Propetties & = 8
Lns 025s 055 0755 15 1255
[=] Process "spmv" (31791) Select or highlight a single interval to see properties
[=| Thread 2691461056
- Driver AP|
- Profiling Overhe ad
= [0] Tesla Kgo
[=] Context 1 {CUDA)
L 5F MemGpy (HtoD)
L SF MemGpy (DioH)
=1 Compute I
7 1000% min_42_gpu |
=] Streams
- Svean 13 ————
Gl Analysis 82 [Defails & Console T Settings W = 8
[y, Export PDF Report G =i
i Kernel Performance Is Bound By Instruction And Memory Latency I
This kernel exhibits low compute throughput and memory bandwidth utilization relative to the peak performance of "Tesla K80". These utilization levels indicate
that the performance of the kernel is most likely limited by the latency of arithmetic or memory operations. Achieved compute throughput and’or memory
bandwidth below 60% of peak typically indicates latency issues.
The first step in analyzing an individual kernel is to = .
determing it the performance of the kernelis bounded G
by computation, memory bandwidth, or instruction/ a0%
memory latency. The results at right indicats that the
&= perormance of kemel "main_42_gpu"is most liksly L
© limited by instruction and memory latency. 709
< —)
[5}
z c i
2 lily, Perform Latency Analysis 2 A I vemory operatons
D E - [controkfow operations
= Thea most likely bottieneck to performance for this kernel is = 2o Arithmet .
o instruction and memory latency so you should first pe rform = 40% I Avitnmat oparations
[G] instruction and memory latency analysis fo determine how it & I Memory (L1/Shared)
N limiting performance. 30%
= -
Q 20%
-E [y, Perform Compute Analysis J -
= 10%
% iy Perform Memory Bandwidth Analysis J
E Compute and memory bandwidth are likely not the primary ;l Compute Memory (L1/Shared) j
k=l
o
o

04.10.2017 OpenACC Performance Optimization 42

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler
File View Window Run Help
i b =g & - [R G

% "NewSessioni 2 = B [Propetties & = 8

Lﬂs 025s 05s 0755 1s 1255

[=| Process "spmv" (31791)
[=| Thread 2691461056
- Driver AP
- Profiling Overhe ad
= [0] Tesla K80
[=] Context 1 {CUDA)
L F MemGpy (HtoD)
L SF MemGpy (DioH)
[=] Compute

7 100.0% main_s2_gpu —

Select or highlight a single interval to see properties

=] Streams

L Stream 13

Analysis 28 [Details E Console T Sattings W, = O
e Y +
Result:

lshy, Export PDF Report

L

i Occupancy Is Not Limiting Kernel Performance

The kemel's block size, register usage, and shared memory usage allow it to fully utilize all warps on the GPU. More...
Variable Achieved Theoretical | Device Limit | Grid Size: | 65535,1,1] (65535 blocks)Block Size: [32,4,1] (128 threads) |
Occupancy Per SM
Active Blocks 16 16 m
0 1 2 3 4 65 6 7 8 9 10 11 12 13 14 15 16
Instruetion and memory latency limitthe performance ||| | Active Warps 63.56 64 54 S —
of a kernel when the GPU does not have enough work 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 =
= 1o keep busy, The perormance of latency-limited Active Threads 2048 2015 e
1] kernels can often be improved by increasing 0 256 512 768 1024 1280 1536 1792 2048
5 oecupancy. Occupancy s a measure of how many ErcuET e g i
g warps the kernel has active on the GPU, relative to the 0% 18% 3% 45% B0% 75% 90% 100%
T maximum number of warps supported by the GPU Warps
e Theorstical cccupancy provides an upper bound
] while achieved occupancy indicates the kernel's Threads/Block 128 1024 — 1
(? actual occupancy. 0 128 266 384 512 840 768 896 1024
N
= Warps/Block 4 32 —]
° [Examine Stall R sasons 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
i L]
£ When bath achieved and theorelical occupancy are high, the Eloal Eirmit 18 18 0D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
% stall reasons can provide insight into why atency is stillan 3
= issue for the kernel. For this kernel, examining stals may not Registers
% be useful until you modiy the kernel to address the =L 1 1=
o
o

04.10.2017 OpenACC Performance Optimization 43

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

‘ NVIDIA Visual Profiler t . I
File View Window Run Help |
-

% "NewSessioni 2 = B [Propetties & = 8

Lﬂs 025s 05s 0755 1s 1255

[=| Process "spmv" (31791)
[=| Thread 2691461056
- Driver AP
- Profiling Overhe ad
= [0] Tesla K80
[=] Context 1 {CUDA)
L F MemGpy (HtoD)
L SF MemGpy (DioH)
[=] Compute
L 5F 100.0% main_42_gpu
[=] Streams

L Stream 13

Select or highlight a single interval to see properties

O Analysis 32 [Details & Console

Settings

sy, Export PDF Report Result

Instruction Fetch - Ihe next assembly instruction has not yet been fetched. 3
Texture - The texture sub-system is fully utilized or has too many outstanding requests.
Synchronization - The warp is blocked at a __syncthreadsi() call.

Stall Reasons

execution
dependency

instruction -
Instruction and memory latency limit the performance

fetch
of a kerel when the GPU does not have enough work

not
to kesp busy. The perlormance of latency-limitsd sokected
kernels can often be improved by increasing memary
occupancy, Cccupancy is a measure of how many throttle
warps the kernel has active on the GPU, relative to the ——
maximum number of warps supported by the GPU

Theorstical cccupancy provides an upper bound
while achieved occupancy indicates the kemel's

memary
actual eceupancy.

dependency

synchronization
texture

|y, Examine Stall Reasons

When both achieved and theoretical occupancy are high, the
stall reasons can provide insight into why atency is still an

Bsue for the kernel. For this karnel. examining stalls may not
be useful until you modfy the kernel to address the ;I

‘ i Occupancy Is Not Limiting Kernel Performance

ied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 44

JULICH

FORSCHUNGSZENTRUM

SpMV on K80

% NVIDIA Visual Profiler +

File View Window Run Help

CRHERL G- aaalfF RIEEE

© "NewSession1 2 = B [Properties % = i
os 0255 055 0755 15 1255

[= Process "spmv" (31791) Select or highlight a single interval to see properties
=] Thread 2691461056
- Driver AP|
- Profiling Overhead
[=] [0] Tesla K80
[=| Context 1 (CUDA)
- MemCpy (HtoD)
- 5 MemCpy (DtoH)

= Compue ——
7 100.0% min_42_gpu |
|=| Streams
 Swean 13 ——
[Analysis 32 [Details & Console [T Settings .. BEE
E 2 % | i, Export PDF Report Result =
& Low Warp Execution Efficiency W
Warp execution efficiency is the average percentage of active threads in each d warp. ing warp ion efficiency will i ilization of
the GPU's compute resources. The kernel's warp execution efficiency of 66% is less than 100% due to divergent branches and predi d i i If
predicated instructions are not taken into account the warp execution efficiency for these kemels is 89%.
Optimization: Reduce the amount of intra-warp divergence and predication in the kernel. More... | ||

i Function Unit Utilization
GPU compute resources limit the performance of a 21| | Different types of instructions are executed on different function units within each SM. Performance can be limited if a function unit is over-used by the

kernel when those resources are insufficient or poorly instructions executed by the kernel. The following results show that the kernel's performance is not limited by overuse of any function unit.
utilized. Compute resources are used most efficiently Load/Store - Load and store instructions for local, shared, global, constant, etc. memory.

when all threads in a warp have the same branching Arithmetic - All arithmetic i ions il ing integer and floating-point add and multiply, logical and binary operations, etc.

and predication behavior. The results at right indicate Control-Flow - Direct and indiirect branches, jumps, and calls.

that a significant fraction of the available compute Texture - Texture operations.

performance is being wasted because branch and
predication behavior is differing for threads within a
warp.

i Ly, Show Kemel Profile - Instruction Executi

The kernel profile shows the execution count. inactive High
threads. and predicated threads for each source and
assambly line of the kernel. Using this information you can
pinpoint portions of your kernel that are making inefficient use
of compute resource due to di and i ;l LI

Level

Mitglied der Helmholtz-Gemeinschaft

04.10.2017 OpenACC Performance Optimization 45

Mitglied der Helmholtz-Gemeinschaft

#) J0LICH

Conclusions

« The NVIDIA Visual Profiler can be used to identify
performance bottlenecks in OpenACC Kernels

« Coalescing memory accesses Is important for
performance

« Using loop clauses allows to provide runtime
iInformation (approximate length of matrix rows) to
the compiler for better performance.

04.10.2017 OpenACC Performance Optimization

FORSCHUNGSZENTRUM

46

